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Polarization instability, steering, and switching of discrete vector solitons
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We study the dynamics ofliscrete vector solitonsn arrays of weakly coupled birefringent optical
waveguides with cubic nonlinear response. We start with a modulational instability analysis, followed by
approximate analytical solutions in the form of strongly localized modes. Next, we compute the effective
Peierls-Nabarro potential for these modes and obtain the spatial average of the power transfer between both
polarizations modes as a function of their relative phase. Finally, we combine the concepts of polarization
mode instability with discreteness-induced beam trapping by the array, and demonstrate numerically the am-
plification of a weak signal by a strong pump of the other polarization, combined with simultaneous discretized
all-optical switching.
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[. INTRODUCTION waveguide arrays with quadratic nonlinear respofiss].

Recently, we suggestdd6,17] to control multiport switch-

mg of discrete solitons in waveguide arrays by engineering
e coupling between the neighboring waveguides: this in-

uces a change of the dynamic properties of the array

The study ofdiscrete spatial solitonkas attracted a lot of
attention during the last years because of many successf
experimental observations of such solitons in different Iatticed
systemsa |n(.:Iu%nGg aAarrays. of dwetaklyt cotup!‘ed Otpt'calthrough the modification of the effective Peierls-Nabarro
waveguldes n 1S semiconductor struc u_[ $ op - (PN) potential, a nonlinear discreteness-induced potential
cally induced photonic lattices in photorefractive materlalsthat is responsible for the transverse dynamics and steering
[2], and voltage-controlled waveguide arrays in nematic liq

, ; . Tof discrete solitons in waveguide arraysee, e.g., Refs.
uid cr;gﬁz]a)ls[B] (see also a number of comprehensive reV|evv[18 19). This year Kartashoet al.[20] showed that in the
paper . '

Di " tial solit h b first introduced guasicontinuous limit a similar digital switching effect can
| DIScrete spatial solitons have been Tirst Introduced as Spgje gpserved opening many possibilities for observation in
tially localized nonlinear modes of weakly coupled optical

. ) . .real experiments.
waveguides, which can exist due to a balance between dis- \1ost of the earlier studies analyzed the propertiesaaf-

crete diffraction in the array and nonlinear response of thgar discrete solitons. However, the nonlinear cubic

waveguide materigl5]. A standard theoretical approach to waveguides that constitute the array are always birefringent;
study discrete spatial optical solitons is based on the derivahus we can expect a very rich dynamics via coupling be-
tion of an effective discrete nonlinear model and the analysisween the orthogonal polarizatioitsee, e.g., Ref.6]). One

of its stationary localized solutions—discrete localizedof the major results in the study of the polarization dynamics
modes[6]. in homogeneous systems is the existenceadérization in-

As localized modes of discrete nonlinear models, suctstability demonstrated for birefringent optical fibgial,22
discrete solitons appear in many diverse areas of phjglcs and planar optical waveguidg83—-25. As a consequence of
For example, they have been theoretically predicted to exighis instability, the fast modes become unstable whereas slow
in many systems, including the Bose-Einstein condensatamodes remain stable, and the instability dynamics results in
loaded onto an optical lattid@], electronic transport in crys- the energy exchange between the polarizations. The defini-
tals, biopolymer chain§9], etc. More importantly, the dis- tions of the transverse electi{€E) modes and the transverse
crete solitons(also called “discrete breathejshave been magnetic(TM) modes as slow or fast depends on the system
observed in a number of different physical systems such ageometry. In AlGaAs optical waveguides the TE mode is
low-dimensional molecular crysta[d0], antiferromagnetic slow and, therefore, it constitutes a stable mp2ia.
chains[11], arrays of Josephson junctioh2], and micro- Vector solitons have been suggested for different schemes
mechanical oscillator array4.3]. of all-optical switching, e.g., by employing collisions be-

In optical waveguide arrays, both propagation and steertween orthogonally polarized solitons wif26] or without
ing of scalardiscrete solitons have been studied more extenf27] four-wave mixing(FWM) effects. The FWM effect is
sively because of potential applications for all-opticalresponsible for the energy exchange between the two or-
switching devices. These studies include, for example, trapthogonal (TE and TM polarization modes. The theory of
ping, reflection, and refraction of discrete solitons in wave-discrete vector solitons developed so far does not include the
guide arrays with defect§l4], and soliton switching in analysis of the FWM effect@s an example, see R¢R8]).
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However, the first experimental studies of the vectorial inter<<Ey/2). In such material this energy corresponds to a
actions in waveguide arrays and observation of discrete vee=1.5 um, where the linear and nonlinear absorption effects
tor solitons[29] suggest the importance of the FWM effects are minimized 30].
by demonstrating that the initial phase between the TE and The normalized power and Hamiltonian are given by
TM modes defines the energy exchange between the modes
due to coupling between two orthogonal polarizations. P=P,+P, =2 (|u?+[vs?), 2

In this paper, we study the dynamics of discrete vector n
solitons in arrays of weakly coupled birefringent optical
waveguides with cubic nonlinear response, taking into cony, _ _ D
sideration recent experimental observati¢@8]. First, we
find approximate analytical solutions for strongly localized . B
vectorial modes. Using these modes, we study the ener L, 14 4 21, 2, 2252 2 *2
transfer between the grthogonal polarizations gnd polarizgy ¥ 2(|un| +lonl® + Alunlod*+ Z(U“un + Ui ) &

tion mode instability, and also calculate the effective PN po- d th d by the d ics. Th .
tential. Finally, we employ the concept of the polarizationan they are conserved by the dynamics. These quantities

instability and discreteness-induced beam trapping by the aplay an important role in the theoretical analysis, in checking

ray and demonstrate a novel approach to all-optical soIitorli''“'r_?ehr_icalI aCC'“I'_;f"‘C{’_ and in th%eill pé)we;\estimationc}‘or the
switching, amplification of a weak signal by a strong pumps’WI ching-amplification procesor AlGa,As waveguides

of the other polarization combined with simultaneous dis—[zg]’ P’ea_'z SGP[W])Z _ -
cretized switching. Equationg1)—3) indicate explicitly that the slow and fast

modes are not equivalent. This is confirmed, for example, by
numerical simulations of the nonlinear dynamics of both
Il. VECTOR DISCRETE NONLINEAR SCHRODINGER slow and fast modes. Moreover, it is easy to see that the
EQUATIONS Hamiltonian for the slow wave is lower than for the fast
) ) ) ) wave. This suggests that the fast wave may become unstable
We describe propagation of light in arrays of weakly ith respect to its transformation into the slow wave. In the

coupled birefringent waveguidd®9] by using the couple- pext section, we study this issue in detail.
mode theory combined with the slowly varying envelope ap-

proximation. Then, the mode dynamics is described by dis- I1l. MODULATIONAL INSTABILITY
crete dynamical equations of the form,

* * * *
(C(unuml T UpUpp tUORa vnvn+1) + ‘Un|2 - |Un|2
n

We study modulational instabilitgMI) of finite-amplitude
du, 5 5 5 solutions of the discrete vectorial model. We employ a stan-
Iy Tunt C(Uns1 + Un-1) + [Un|“Uy + Alvg|u, + Bogu, = 0, dard analytical approad1] and consider the evolution of a

weakly perturbed finite-amplitude plane wavag(z)=[u,
o @ Sun(2)]€ WD v (2)=[vo+ dvp(2)]€ @2 whereu, and
i— = vn+ C(Uns1 + Unt) + [vnl?vn + Alug/ 20, + Bl2v, =0, vo are the mode amplitudesy,, and dv,, are small perturba-
dz tion functions,q, and g, are the transverse components of
whereu, andv, are the normalized envelopes of the TE andthe wave vectors, ank}, andk, are the propagation constants

TM electric field components, respectivedyis the propaga- ©f the TE and TM modes, respectively. The pertueratmn

tion distanceC is the coupling parameter being the same forfunctions are taken of the formaoup(z)=u,e "™

both polarizationgboth modes have similar transversal ex- +u,e QK2 & (2) =0, QKD+, 67 Q™K 2 where the
tensiong, the coefficientsA and B characterize the cross- amplitudesu, u;, v1, andv;, are assumed to be small, where
phase modulation and FWM effects, respectiv@lging both  Q andK are the wave vector parameters of the perturbation.

normalized to the self-focusing tejnfFigure 1 shows a sche- The modulational instability gaircG can be defined a&

matic transversal view of the waveguide array, where the=Im[K]. The instability regions corresponds to the condition

orthogonal polarizations have been chosen alongthedy  G>0, while for G<0, the plane wave solutions are stable.
directions. For the AlGa_,As waveguide array$29] the  The results of the Ml analysis suggest that when plane waves
parameters ard=1, B=0.5, and the TE mode corresponds are unstable, we can expect the formation of spatially local-
to the slow wave whereas the TM mode—to the fast waveized structures in the waveguide array, the so-calisdrete

To consider the nonlinear Kerr effect in a experiment usingvector solitons

AlLGa,,As, it is necessary to take the photon energies below After substituting these weakly perturbed plane waves

one-half of the semiconducting band gap energyw  into the dynamical Eqs(l) and after applying a standard
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1 The results for Ml in the vectorial case that follow from
Eqg. (4) can be shown to reduce to the results for the scalar
case studied earlid31]. Indeed, taking one of the ampli-

e tudes equal to zero, or the nonlinear couplidgsB=0, or

13 by takingB=0 and imposing that both modes possess equal
amplitude, we obtaia,=0 andG= i\gl, and the expression
reduces to the scalar Ml gain from REB1],

1/2
G=+ {4(:0” sin2<%> [2u(2) - 4Co, sin2<%>] } :

Having identified the regions of modulational instability,

i we proceed now with the analysis of the localized modes, the
energy transfer between the polarizations, and the calculation
of the PN barrier that controls the transversal dynamics of
the discrete solitons. To keep the description simple and ob-

1 tain closed-form analytical expressions, we restrict our study

m by the case of strongly localized mod¢&M). This restric-
tion to SLMs is, however, of great technological importance
FIG. 2. (Color Onliné Gain of modulational Instablllty as a when try|ng to control the power exchange and Steering of
function of the mode amplitudes anduvo, for C=0.1. No insta-  these modes for all-optical computing or communications
bility exists in the darkest area. purposes. Therefore, our focus is primarily on narrow optical
solitons.

analysis[31], we obtain a simple quadratic equation #,
K*+a,K2+a,=0, where

— _(f2 2 2\, 4 _ _ 2.2
8y =~ (7409 + (1 +B)Up = 4B(2A+ 28 = Dugug First, we find the profiles of strongly localized modes of
+(1+ Bz)vg the simplest odd symmetry. We use the standard ansatz,

IV. STRONGLY LOCALIZED MODES

and u,(2) = U{...,0,e6% 1 ee7%u 0, .. &Mz,
a,={(f - ud)(g-BW) - [f + Bg+ (3B% - )udJv3+ Buj . . _ ©)
2 =1{(f ~w)(g~Bu) ~[f + By + (3B~ 1)ugluf + Bug} 0n(2) = VL....,0,58%,1,567,0, .. J&M,
X{(f +up)(g+Bw) +{f +Bg-[(2A +B)(2A+3B)
whereU andV are the amplitudes, andk, are the trans-

2\,.2 4

~ Lughug + Bugt, verse components of the wave vectomhich describe initial
where f=-4Co, sinz(Q/2)+uS—Bv§, g=-4Co, Sir?(Q/2) kicks app_lied to the componentshe parameters and §
+vS—BLI(2), where ¢,=cosq, and o,=cosq, describe the characterize the mode decay for the TE and TM components,
structure of the carrier waves in both the components. I@nd they are assumed to be small. After substituting this
particular we are interested in unstaggered modes, that impf§nsatz into Eq(1) and keeping only the first-order termsédn
to takeq,=q,=0 (for staggered modes we need to tage andd, we obtain
=q,=m). After solving the quadratic equation, we obtain for

the MI gain __ Cecogk,) __ Ccogk,) 5
' 1 8~U2+(A+B)V2' T \V2+(A+B)UZ 6)
= -+ — _ [22 Z ga\L/
G=Im[K]=+ V2 Im{(-ay  Vai - 42" (4) Similarly, we find the profiles of strongly localized even

_ _ _ modes, using the other ansatz,
For B=0, expressiorn(4) is close to the MI gain for the

two-component coupled discrete fields of R¢82,33. The T~ U{ ..,058%, 1 ek ze k0, .. 1N
effect of the FWM term is to decrease the necessary power to " T et

observe the modulational instability. The energy exchange — — k. ok "z @)
between orthogonal polarizations improve the instability of vp=V{...,0,6e",1,e™, 57,0, ... Je™?,

plane waves allowing the formation of localized structures — —

like discrete vector solitons. whereU andV are the mode amplitudek, andk, are the

To identify the regions of instability, in Fig. 2 we display transverse components of the wave vectermnd é are small
the results of our analysis in the form of a contour plot inparameters. To first order we obtain
(ug,vg) space where the more clear regions correspond to
larger values of the MI gain, whereas darker regions corre- — C cogky)
spond to lower or zero MI gain. In Fig. 2 the coupling pa- € C cogk,) +U2+ (A+ B)Vz’
rameter is weakC=0.1, and we can see that discrete solitons
are expected fouy=vy=0.4. (8)
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— Ccogk,) simplifying the mathematical problem considerably, it still
o= = =" describes correctly the dynamics of different kinds of very
Ccogk,) +V-+ (A+B)U

localized input states which can be realized in experiment.
From Eqs(7) and(8), it follows that our assumptions that all

parameters, 8, €, 6 are small can always be satisfied for

small values of the coupling parameter and high enough From Ed.(10), we notice that in the limit of strongly
mode amplitudes. localized modes, only the contribution of the central wave-

We varied both, the mode amplitudels=V, and the cou- guide field is important while other_term; are prop_ortio_nal to
pling paramete€, and confirmed numerically that the three- the small paramet*ezlsezéz. Thus, in this approximation,
site analytical solutions approximate well the modes withdPu/dz=2BIm[(Uugg)7]. Using SLMs, we poseuy(z)
large enough amplitudes or weak enough waveguide coFY{-..0,68%, 1 ee7u,0,.. JM% and vy(2)=\...,0,
pling. These modes display stability properties in agreemen®e',1,8e7%,0, .. }e**"'%, and whereg, and ¢, are the
with Fig. 2. A complete analysis of the families of localized initial phases of the modes.
modes and their linear stability is still an open problem, and We obtain,

it is beyond the main scope of this paper. (Ugug)? = UAVZ[1 + 2¢5 cogk, - k)12

V. POWER TRANSFER Xexp2i(h, = \,)z+2i(dy—¢,)]. (11

A. General comments This implies,

B. Analytical results

The analysis presented above corresponds to the symmet- dp, oo 5
ric mode profiles and stable mode propagation. However, —~ =~ 2BUV1+2e5codAK) I'si2ANz + 24 4],
similar to the continuous cases of two-mode polarization dy-
namics [21-25, the TE and TM polarization modes ex- (12
change their powers while traveling along a waveguide arrayyhere AN =\, -\, Ak=k,—k,, andA¢= ¢,— ¢,. After in-

Moreover, this effect can beversedf we change the initial  tegrating this expression, we find the approximate power
phase difference between the polarizations at the array inpWgriation inz

In order to get a deeper insight into the polarization insta-

ili i i 2BU?VZ(1 + 2e5 cog AK))?
bility dynamics and to study. the mech:_;tmsm of the.power P(2) ~ U2+ ( €6 cogAKk)) [cos2Ad)
exchange, we study the partial powers in more detail. From 2AN
conservation of the total powd, it follows that
— COS2ANzZ+ 2A9)]. (13
P P, P, ) . .
= =00 e =- P (9) On the other hand, to first order i 6 and assuming small

transversal moment#,,k,, we find \,=1+(C/e)=1+U?
i.e., as one of the polarizations gains extra power the othet (A+B)V?, and\,~-1+(C/5)=-1+V3(A+B)U% This im-
one loses it in the very same amount. Using the dynamicaplies, AN=2-(A+B-1)(U?-V?). Thus, the power varia-

Egs.(1), it is easy to show that tions inz are approximately given by
P, P, ( AUy au;) ) 2BUA?
—u__ = u—+uy—2 P, (2 = U+ Cog2A¢)
9z dz % gz "oz ! 4—2(A+B—1)(U2—V2)[ ¢

=2BY, Im[un(2)%,(2)7], (10 — CO§2ANZ+ 2A¢)] + O(€%, 88), ”

2\ /2

which highlights the role played by the FWM coupling terms P,(2) = V?- 2BUY IRV
in the power exchange. In the absence of FWM effects, i.e., 4-2AA+B- DUV
for B=0, there are two conservation laws, two conserved - co42ANZ+ 2A )] + O( 82, 8¢).
powers, while in the presence Bfthese restrictions are re-
laxed and only the total power is conserved, opening th(g
route for the exchange of powers between the component
Also, the change of the relative phase between the polariza- 2BU2V2
tion modes along the propagation directois important for (P~ UZ+ 4—AA+B- 1(UZ-\2
the power exchange, if the relative phase is Zgrg., both ( ) )
the fields can be treated as rgdhe power exchange is ab- +0(e? 8¢),
sent. Thus, the initial phase between the modes is a very (15)
important quantity that determines the polarization mode dy- 2BU2\?
namics. In order to pursue this idea analytically and examinéP,) = V* - 1-2 2 2

o j -2A+B-1)(U*-V?
the power transfer mechanism in detail, we employ the ap-
proximation of strongly localized modes used before, in SecEquations(15) describe, in a very simple way, the depen-
IV. This approximation is very useful because, aside fromdence of the power transfer on the relative phase between the

[coq2A¢)

rom these, we find the spatial average output powers for
oth modes,

Ccoq2A )

cog2A ) + O(8°, 8e).
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polarization modes. For the linear polarizatigne., A¢  transfer and the minimum and maximum TE power expected
=0,m), the TE mode gains extra power from the TM mode.at the output. The average TM mode output power can be
On the other hand, if the initial polarization is elliptid¢  calculated agP,)~U2+V2—(P,).
=7/2), the power exchange process becomes reversed, and In Figs. 3a), 3(c), and 3e), we marked three points la-
Eq. (15) shows that the TM mode gains some power from thebeled as P1, P2, and P3. For all of thddV=0.95. In Fig.
TE mode. 4, we show the power evolution at these points in the
direction. We display the dynamics for tvadintervals, from
) 0 to 5 (left-hand sid& and from 95 to 10Qright-hand sidg
C. Numerical results Our main idea is to compare the initial and final dynamics
In Fig. 3, we show the contour plots of the average TE&nd observe if our approximation is good at the beginning
output power for weak couplingC=0.1) as a function of the ~and the end of the waveguide array. In this figure, we exhibit
amplitudes of both modes. We present also a comparisom’mer'cal(bmd)’ theoretical(gray), and average theoretical

. e izontal line gray results for the power dynamics of the
between our theoretical predictiofileft column based on orizon .
Egs. (15), and direct numerical simulationgight column TE (solid) and TM (dashegi modes. Figure 4 shows a very

based on integration of Eqel). In Figs. 3a) and 3b), i.e good agreement between the theoretical and numerical re-

. L ; sults. In Fig. oint PJ), the TE mode acquires power
for the case of linear polarization, the tendency is that fof ., e Tl\g/JI ég)d((epat the (1))utput, for the case?)f Iinezfr initial

bigger amplitudes of the modes, bigger TE output pOwWer is),ari7ation. Also, the average power prediction from Egs.
achieved. In this case, the gain for the TE mode from the T 15) seems to work very well. Figure(d) (point P2 shows
mode is about-25%. In Figs. &) and 3d), i.e., forthe case he opposite power dynamics. For an elliptic initial polariza-
of elliptic polarization, the TE output power is always lower tjon, the TM mode gains power from the TE mode. Also in
than the TE input power, and the TM mode gains up tothis case, the average power prediction works very well, too.
~25% of the TE mode power. In Figs(e3 and 3f), there is  |n Fig. 4(c) (point P3, the average power estimation is still
no power gain, and this corresponds to the dynamics withouh good agreement with the numerical results, but it fails to
exchange of power, on average. The three cases presenteddigscribe the details of the power dynamics.

Fig. 3 show a very good agreement between direct numerical The physics of the power transfer mechanism observed in
results and our theoretical approximation, for the poweirthe interaction between the TE and TM modes is explained
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t_)y the specific proper;ie_s of_ birefringence of the cubic non- Heyon™ — Z[UZ—VZ+ %(U4+V4) +(A+ B)UZVZ

linear response, and it is similar to the case of a homoge-

neous medium. If we consider only the linear terms of bire- + C(UZ+V2)cosk], (17)
fringence from Egs(1) for n=0, it is easy to show that the

power variation for both modes has the form where we takeku:kvik._l\lext, and for the sake of simplicity,

= P we takeU=V an_d U=V. Following a standard pro_cedure
—=-—Y~ +2BU?sin(42), [17-19, we consider the odd and even modesves differ-

0z 0z ent stateof the same nonlinear mode shifted by a half of the
where the+ and — signs represent the lineal and elliptic @@y period. This implies that the power should be the same
initial polarization cases, respectively. Now, let us exchangd®r both modes, i.Po44=Peven With these assumptions, we
the birefringence. This implies T&TMO fast wave _evaluate the value of the Hamlltonlan for these two modes,
— slow wave sin(4z) — -sin(4z). As a result, in terms of the mode amplitude,

Py P, _ 22 i Hoga™~ — (L +A+B)U%,
E=— - ~ F 2BU“V-sin(4z).

(18

Heven= — 3(1 + A+ B)U* - 2CU? cosk.
This demonstrates that birefringence plays an important role_

in the dynamics of the modes. Choosing an elliptical initialFinally, an estimate for the Peierls-Nabarro barrier is ob-
polarization, is the same as changing the sign of the birefrintained by subtracting the values of both Hamiltoniadk]
gence, and therefore exchanging the slow and fast waves. = Hodd~Heven

VI. PEIERLS-NABARRO POTENTIAL AH = - (1 +A+B)U*+ 2CU? cosk. (19

To understand the transversal dynamics of the discret®his expression is similar to the scalar case discussed before
vector solitons, we calculate the Peierls-Nabarro barrier. Us-17], but it includes the effect of renormalization due to the
ing the power and Hamiltonian from Eq&) and (3), and  cross-phase modulation coupling.
assuming strong localization of the odd and even nonlinear Result(19) means that at high powers and for small initial
modes described by E¢6) and Eq.(8), we can estimate the transversal momentuxor kick), the discrete vector soliton is
mode power and the Hamiltonian, not able to propagate across the waveguide array, because it
needs to overtake the effective energy barrier which is very

Poda= U?+ V% Peyen=2(U*+V?), (16)  deep; the discrete soliton gets trapped at the input wave-
guide. At low powers and a finite initial kick, the effective
Hoga= — [U% = V2+ 2(U*+ V) + (A+ B)UAV?], trapping energy is low and the discrete soliton can travel
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FIG. 5. (Color online Examples of all-optical multiport switching based on discrete vector solitons. The coupling paraméter is
=0.92. Lineal polarization(a) k,=0, k,=-0.5,uy=0.1, andvy=1.248, andb) k,=k,=0, uy=0.1, andvy=1.5. Elliptic polarization(c) k,
=-0.8,k,=0, up=1.38, andvg=0.1, and(d) k,=k,=0, up=1.5, andvy=0.1. Note that contour plots have different power scales for the TE
and TM modes in each case.

across the waveguide array. At intermediate powers, the digquation. We point out that the choice of the initial input is
crete soliton travels across the array for some distance fromot a crucial issue; the discrete soliton is a self-adjusting
the input waveguide, and then gets trapped in some wavanode, and the energy excess is liberated in the form of ra-
guide because of the nonlinearity. This kind of dynamics is aliation modes[23]. We have made numerical simulations
feature of nonlinear discrete systems, and it was recentlwith other profiles, such as strongly localized modes and
suggested for multiport all-optical switchind6,17]. discretized Gaussian modes, and the dynamic behavior is
similar, although the sechlike input seems to work better.
The idea is to control a small Té®r TM) signal beam by
VIl. MULTIPORT DISCRETIZED ALL-OPTICAL means of a TM(or TE) kicked pump. In numerical simula-
SWITCHING tions, we takez,,,x=50 and an array of 110 waveguides. The
) i value of the coupling parameteZ,=0.92, is taken from re-
. The results obtained so far suggest that there is a polagen experiment§29]. We use a small unkicked signal with
ization |nstab|I_|ty wher_e the flow o_f_power _could be directed 4, initial power of 0.03which corresponds to the dimension
by an appropriate choice of the initial relative phgse betweerbower~1.68 (Watts]. In the absence of a pump mode, the
the TE and TM modes. Also, and due to the interplay Ofgjona) giffracts in the array and no discrete vector soliton is

discreteness and nonlinearity, the lateral propagation of thg .| the presence of a strong pump, the power transfer
optical soliton can be controlled by means of a judicious kickis op<arved with the gain calculated éE[<P (Zina))
u,v

or am_plltude _tum_ng{lG,l?_l. I_n_ th|_s section we examine the ~P,,(0)]/P,,(0). The coupled dynamics of two polarization
combined switching or amplification of a narrow input beam’com’ponentsy leads to the formation of a discrete vector soli-
by solving Eq.(1) numerically. The beam profile is chosen in ton that can be switched by varying the input kick.

the form of a highly truncated sechlike profl£6,17, Figure 5 shows results of multiport switching through the

Uy(0) = ug secﬂiuo(n—ncu)/\s‘E]e‘ikum‘”cu)e“f’u, coupling of the TE and TM modes. Figurdap shows an
(20) example of the eight-site switching. In this case, the gain
_ _ 576k, ("-Ngy) o by power for the TE mode is 0f90%. In Fig. §b) there is no
on(0) = vo sechvg(n = ng,)/\2]e e, switching, and the gain for the TE mode is very high,
for n-n,,=n-n,,=0,%1, andu,(0)=v,(0)=0, otherwise. ~6000%. A four-site switching is shown in Fig(& where

Parametersiy anduvg are the initial amplitudess, andk, are  the initial polarization is elliptical. The gain for the TM mode
the initial kicks (the input angles n., andn, are the initial  is ~45%. Finally, Fig. %d) shows no switching of both
soliton coordinates, andp, and ¢, are the initial mode modes, with the gain of-30%.

phases for the TE and TM polarization components, respec-
tively. From previous work$16,17), we know that this an-
satz works well for the case of scalar modes when the model We have studied the properties of discrete vector solitons
is reduced to the discrete nonlinear Schroding®@NLS)  in arrays of weakly coupled birefringent optical waveguides

VIIl. CONCLUSIONS
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with cubic nonlinear response. We have analyzed the effectdiscreteness-induced beam trapping for achieving simulta-
of vectorial interaction on modulational instability, and ob- neous switching and amplification of a weak signal by a
tained the profiles of strongly localized nonlinear modes. Westrong pump of the other polarization.

have studied the polarization mode instability in the case of
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